

PFE Projects Book

Email us at contact@redxt.com with your CV and a letter of motivation about the project you
are interested in and we will get back to you.

Academic Year 2025/2026

mailto:contact@redxt.com

Project 1: HPC Software Stack Build
Automation

Brief description:
In high-performance computing (HPC), efficiently managing and deploying software stacks
across nodes and clusters is critical to achieving optimal performance. Manual software
builds are time-consuming and prone to errors. Automating this process with robust tools
ensures better reproducibility and higher productivity.

ReDX is working on improving a large scale cluster application software ecosystem on Intel
Xeon CPUs and NVIDIA A100 and H100 GPUs. The primary goal of this internship is to
automate the build of a software stack for this supercomputer environment. Then, the
second goal is to streamline the maintenance of the software stack by automating the
identification and cleanup of outdated software versions.

 The student will gain practical experience in HPC build systems and automation techniques.

Current status:
The current cluster supports multiple compilers like gcc and intel compiler to ensure
compatibility and performance for a variety of applications. A range of applications is also
available to support research in multiple scientific domains, as an example, Quantum
espresso that is used for electronic structure calculations and OpenFoam which is used for
computational fluid dynamics (CFD) simulations. The cluster also offers several libraries like
OpenMPI , LAPACK and FFTW and scientific frameworks, pre-compiled and managed
through modules. These applications and libraries are installed using EasyBuild that
automates software installation and management.

PFE project Goals:

The goal of the project is to build an HPC software stack for scientific computing and data
science on an operational cluster. It is divided into two key components: the first focuses
on automating the process using state of the art tools like easybuild or spack whenever
possible. The second part focuses on parsing the modulefiles to retrieve the list of installed
software, their versions, and compiler information, and dependencies, then generating a
color-coded report to highlight which versions should be kept, removed, or reviewed.

Set up build automation:

●​ Use scripts, Spack, and EasyBuild to configure automated software stack
deployment.

●​ Comparative study between these tools and the scripting method.
●​ Integrate the software modules to provide users with seamless access, to

address the dependencies of the applications and to avoid conflicts between
modules.

●​ Implement version control to track software changes (e.g., Git).

Software Stack Inventory and Filtering

●​ Automatically retrieve:
○​ The list of available software installed on the Toubkal Supercomputer

via modulefiles.
○​ The version of each software.
○​ The compiler version used for each software build (if available).
○​ The dependencies on other modules​

●​ Filter this inventory to keep only the last N versions of each software and

remove the outdated ones by generating a color-coded report:
○​ Red: Software versions to be deleted.
○​ White: Software versions to be kept (N or less, if the corresponding

software has less than N versions installed).
○​ Orange: Versions with deprecated or problematic dependencies.​

●​ To do that, Candidate should develop a script\software package that:

○​ Parses modulefiles in the Supercomputer.
○​ Takes as input the number N (how many versions to retain).
○​ Outputs a filtered report.
○​ Implement a “restore mode” that allows the recovery of previously

deleted software versions, particularly those removed due to being
outdated. This feature should enable users to selectively restore
specific versions and regenerate the report to reflect how many
software packages are being rescued from permanent deletion.​

Required skills:
●​ Familiarity with Linux, and good software development skills with C/C++, Github,

make/cmake, and other tools
●​ Ability to learn parallel programming models such as MPI, OpenMP, CUDA,...
●​ Knowledge and experience with Git, CI/CD tools is a plus.
●​ Very good English proficiency, well organized, use of project management tools like

Clickup.

Planned training:
●​ Linux fundamentals of the “Complete Linux Training Course” on Udemy platform, the

course will be taken in modules starting with the fundamentals. The course has also
advanced modules that can be taken during or even after the internship project
during employment. A ReDX engineer will be with you along the way for any support
required.

●​ Introduction to HPC: course with hands-on exercises to learn about HPC systems,
and parallel programming using OpenMP, MPI and GPU programming with
OpenACC.

●​ 1:1 sessions with ReDX engineer, and senior expert as required for the specific tasks
of the project.

Duration and other details:
●​ Recommended period: 6 months.
●​ Compensation: Interns will have a monthly stipend with a possibility of an end of

internship performance bonus as well as part or full time employment.
●​ Possibility to work with end customers.

https://www.udemy.com/course/complete-linux-training-course-to-get-your-dream-it-job/

Project 2: LLM-driven Text
Classification and Content Analysis

Brief Description:

This internship project focuses on developing a Large Language Model (LLM)-based
framework for smart text understanding, categorization, and refinement. The goal is to
extract structured insights from free-form text and generate improved, contextually
consistent versions of the content. The system will enable accurate categorization, title
suggestion, and adaptive refinement of textual inputs without manual intervention.

The project leverages pre-trained LLMs and few-shot learning techniques to perform text
classification, metadata extraction, and semantic clustering, thereby supporting applications
such as content organization, intelligent recommendations, and analytics.

Current Status:

Existing solutions often rely on rule-based or keyword-driven text processing, which lacks
adaptability and semantic understanding. This project aims to automate text interpretation
and refinement using LLMs, ensuring scalability, precision, and contextual awareness across
varied input domains.

Project Goals:

1. Design an LLM-Based Text Understanding Module

●​ Fine-tune or prompt-tune a pre-trained LLM to interpret and structure textual content.
●​ Extract relevant metadata such as topic, intent, tone, or priority.
●​ Automatically generate concise and relevant titles and improved text versions.
●​ Ensure reliable classification and differentiation across multiple content categories.

2. Develop a Category Identification and Clustering Framework

●​ Implement a text-to-category mapping system for automated and dynamic
categorization.

●​ Use semantic embeddings and clustering algorithms to group semantically related
texts and discover new categories adaptively.

●​ Generate structured outputs suitable for integration with recommendation, ranking, or
analytics subsystems.

3. Integration and Validation

●​ Integrate the developed models within an existing backend or prototype environment.

●​ Evaluate classification accuracy, refinement quality, and adaptability using diverse

datasets.

Required Skills:

●​ Strong understanding of Natural Language Processing (NLP) and LLMs (e.g., GPT,
T5, LLaMA).

●​ Experience in text classification, semantic embeddings, and few-shot learning.
●​ Proficiency in Python, with experience using AI libraries such as PyTorch,

Transformers, and spaCy.
●​ Good analytical skills, strong English proficiency, and solid version control practices

(Git).
●​ Knowledge of pruning techniques and hybrid web app development is a plus.

Deliverables:

●​ A technical report detailing system design, implementation, and evaluation.
●​ Source code and documentation for model integration and reproducibility.
●​ Performance metrics covering classification accuracy, text improvement quality, and

clustering robustness.
●​ A demonstration prototype showcasing automated text categorization and

refinement.

Duration and other details:

●​ Recommended period: 6 months.
●​ Compensation: Interns will receive a monthly stipend, with the possibility of an

end-of-internship performance bonus, as well as the opportunity for part-time or
full-time employment.

●​ Possibility to work with end customers.

Project 3: Next-Gen Mobile Experience
Brief Description:
The current system is an AI-assisted platform for image collection; an internal pipeline
ingests, organizes, and analyzes submissions to improve quality and fairness.

The framework is built on a hybrid technology where the web and Android versions are
already in production. This internship focuses on delivering a production-ready iOS app,
implementing a self-hosted update for Android (OTA updates without Play Store), adding an
assistant chatbot to guide users and resolve basic issues, integrating a real-time
user↔admin chat for advanced issues, and improving error handling/observability across
mobile and web clients The project also includes a dual-app experience in one APK (two
related sections under one install) to let users switch seamlessly between the system's core
and complementary experiences.

Current Status:
●​ Web and Android (v1) are already in production. The iOS build exists, but it is

outdated and missing feature parity.
●​ Updates for Android currently require users to uninstall/re-install APKs.
●​ Basic error reporting.
●​ Getting help inside the app is limited, with no real-time conversation or proactive

guidance.​

Project Goals:

1. Finish and ship the iOS app

●​ Match Android features (login, events, submissions, media, notifications).
●​ Smooth testing and release process (stable builds, clear release notes).

2. Self-update Android app with standalone OTA

●​ Users see an update prompt and install without manual delete/reinstall.
●​ Simple changelog, optional “remind me later,” and clear progress feedback.

3. In-app assistant (smart guide)

●​ Answer “how do I…?” questions, summarize event highlights and deadlines with
either hard-coded entries or off-the-shelf LLMs,

●​ Suggests next steps that improve a user’s chance of success,
●​ Hands off to a real-time chat with a human when unsure.

4. Real-time chat (user ↔ admin)

●​ Quick help during events, with notifications and basic attachments (e.g.,
screenshots).

●​ Friendly, minimal UI focused on speed and clarity.

5. Better error handling & reliability

●​ Clear user-friendly messages, simple fixes (“Try again”, “Contact support”),
●​ Basic health checks and usage insights for proactive error handling.

6. Dual-App Prototype in One APK (“two apps, one experience”)

●​ A single Android app that lets users switch between two experiences (e.g., “Core”
and “Community”) without a second install.

●​ The switcher (tab or toggle) shares the basics: one login, one update flow, one
notification center, etc.

Required Skills:

●​ Angular + Capacitor (Mobile), Django (Backend).
●​ Practical mobile app building (testing, packaging, and releasing).
●​ Product thinking: clear wording, tidy flows, and consistent visuals.
●​ Team habits: small PRs, Git merging & branching, versioning, and release handling

(tags, changelogs)
●​ Good communication skills and strong English level for specs, release notes, and

support interactions

Deliverables:

●​ A ready-to-ship iOS app matching Android features.
●​ A private Android update flow inside the app (no Play Store dependency).
●​ A smart in-app guide (FAQ/assistant) that helps users self-serve.
●​ Real-time chat feature with notifications.
●​ Dual-App prototype in one APK (tab/switch navigation, shared session, unified

settings).
●​ A demo showing the full journey
●​ A well-documented and clean code with a technical report detailing system design,

implementation, and evaluation.

Duration and Other Details:

●​ Recommended Period: 6 months
●​ Compensation: Monthly stipend with potential end-of-internship performance bonus

Project 4: Conversational &
Argumentative Chatbot for HPC
Cluster Storage (PFS-GPT)

1. Context and Motivation
Modern HPC facilities rely on parallel file systems (PFS) and scalable storage stacks to feed
compute clusters at petascale throughput and millions of metadata operations per second.
Popular choices include GPFS/IBM Spectrum Scale, Lustre (OpenSFS/Whamcloud),
BeeGFS (ThinkParQ), CephFS, and emerging DAOS for disaggregated NVMe.
Administrators, researchers, and students continuously ask overlapping questions—from
definitions and component roles, to design trade‑offs, to tuning and capacity planning).
Documentation is fragmented, vendor‑biased, and jargon‑heavy.

Goal: Build a domain‑expert chatbot that can discuss, explain, and argue storage designs,
operations, and best practices across PFS technologies—serving beginners (friendly
guided answers) through experts (deep technical guidance with citations), while minimizing
hallucinations via retrieval‑augmented generation (RAG) and verifiable reasoning.

2. Problem Statement

Create a multi user, citation‑first HPC storage assistant able to:

●​ Answer definitions, architecture questions (e.g., client–MDS/OSS, OST/MDT
layout, NSD/DAOS tiers), and how‑to tasks (deploy, stripe, tune, troubleshoot),

●​ Provide recommendations driven by structured rules + retrieved evidence (workload
patterns, capacity, bandwidth, metadata rates, cost),

●​ Argue pros/cons for design choices (e.g., Lustre vs BeeGFS for small‑files, metadata
scaling strategies) with clear, sourced reasoning,

●​ Adapt explanations to Beginner / Intermediate / Expert personas and export
concise runbooks.

Constraints: Answers must be grounded in cited sources (vendor docs, standards,
whitepapers, IO500 reports). The system must flag uncertainty and gracefully refuse
dangerous advice

3. Tools and Resources:

●​ Hardware: 2–8 NVIDIA H100 GPUs, Lustre filesystem, Toubkal Supercomputer
●​ Software: HuggingFace Transformers, NVIDIA NeMo, FAISS, LangChain or

LlamaIndex

4.Learning Objectives

The intern will work in close collaboration and mentorship with a PhD candidate
pursuing world class publishable research within an industrial and practical environment.

By the end, the student should be able to:

●​ Analyze the HPC memory landscape and its key variables.
●​ Design data pipelines that tolerate heterogeneous sources.
●​ Compare alternative solution families (rule-based, IR/semantic search, classical

ML, LLMs, RAG, hybrids).
●​ Define clear KPIs (precision/recall of fields, reasoning correctness, robustness to

change).
●​ Communicate design trade-offs and limitations honestly.

5. System Capabilities
●​ Conversational QA (Beginner→Expert) for GPFS/Lustre/BeeGFS/CephFS/DAOS.
●​ Evidence-first answers with citations and last-verified dates.
●​ Design recommendations (inputs → stripe policy, MDT/OST counts, tunables, HA

notes).
●​ Comparative argumentation (pros/cons, assumptions, trade-offs across

technologies).
●​ Safety & ops: guardrails/confirmations, telemetry, CI/CD, and exportable

runbooks/configs.

6. Required Skills

●​ Python programming (HTTP requests, parsing HTML, basic data processing).
●​ Web data extraction basics (DOM parsing, tables, text).
●​ HPC basics
●​ Data normalization (units, naming, schema design).
●​ Basic database handling (DuckDB / PostgreSQL).
●​ Ability to document results clearly.
●​ Intro AI/LLM skills (preferred): prompting a Large Language Model to interpret

specs, map unknown field names, summarize technical text.

7. Duration and Other Details

●​ Recommended Period: 6 months
●​ Compensation: Monthly stipend with potential end-of-internship performance bonus

and potential paper publication co-authorship

Project 5: Open-Source HPC
Networking Chatbot (FabricsGPT)

1. Context and Motivation
In High-Performance Computing (HPC), the network fabric is as critical as compute and
memory for scaling performance, ensuring predictable latency, and maintaining energy
efficiency and total cost of ownership (TCO). Modern HPC clusters increasingly rely on
advanced interconnect technologies such as InfiniBand (HDR, NDR, XDR) and high-speed
Ethernet (100/200/400/800 GbE with RoCEv2 and DCB) to support massive AI and
simulation workloads. These fabrics involve complex parameters—link speeds, ASIC
generations, routing algorithms, congestion management (PFC, ECN), and offload
capabilities (SHARP, GPUDirect, RDMA)—that collectively determine cluster performance
and reliability. However, knowledge about these networking technologies is scattered across
vendor documentation (NVIDIA/Mellanox, Intel, Broadcom), standards bodies (IEEE,
OpenFabrics Alliance), whitepapers, HPC site guides, and community forums with best
practices in architecting HPC networks for large scale clusters. These sources change
frequently in layout, terminology, and available data fields. Integrating consistent and
up-to-date networking knowledge into ReDX’s Cluster Configurator or other HPC design
tools is therefore time-consuming and fragile if done manually and requires substantial
expertise and experience.

Goal: Build an autonomous, domain-specialized, LLM-assisted networking design assistant
(GPTFabrics) that continuously discovers, interprets, normalizes, and reasons over
InfiniBand and Ethernet information—and exposes valid insights (topology design,
bandwidth/latency estimation, congestion control, offload compatibility) to the Cluster
Configurator.

2. Problem Statement

Build a system that can, to varying degrees and by any justified approach:

●​ Discover relevant networking information (InfiniBand, Ethernet, topologies,
RDMA/RoCE support, congestion control) from heterogeneous sources without
relying on fixed structures or vendor-specific assumptions.

●​ Understand what it finds by normalizing networking concepts such as link speed
(Gb/s), port radix, ASIC generation, latency, routing scheme …

●​ Support design reasoning (e.g., “Is this 2-tier fat-tree non-blocking for 128 GPU
nodes?”, “What’s the oversubscription ratio with 200 Gb/s downlinks and 400 Gb/s
uplinks?”)

●​ Remain robust over time despite evolving nomenclature, topologies, and hardware

generations (HDR→NDR→XDR, 400→800 GbE).

3. Tools and Resources:

●​ Hardware: 2–8 × NVIDIA H100 GPUs, Lustre filesystem, HPC Cluster
●​ Software: HuggingFace Transformers, NVIDIA NeMo, FAISS, LangChain or

LlamaIndex
●​ Data Sources: NVIDIA/Mellanox docs, Intel and Broadcom Ethernet specs, IEEE

papers, OpenFabrics Alliance resources, academic and industrial HPC network case
studies.

4.Learning Objectives

The intern will work in close collaboration and mentorship with a PhD candidate
pursuing world class publishable research within an industrial and practical environment.

By the end of the internship, the student should be able to:

●​ Analyze the HPC fabric landscape, differentiating InfiniBand and Ethernet in terms
of latency, throughput, congestion behavior, and scalability.

●​ Design data and retrieval pipelines resilient to heterogeneous and evolving
documentation formats.

●​ Compare alternative reasoning strategies: rule-based bandwidth calculators,
semantic search, LLM prompting, fine-tuning, and hybrid RAG pipelines.

●​ Define evaluation metrics (precision/recall for field extraction, correctness of
topology reasoning, hallucination rate, adaptability to new generations).

●​ Communicate clearly the design trade-offs, limitations, and interpretability of the
system

5. System Capabilities

●​ Find:Locate pages, datasheets, or topology design guides that describe InfiniBand
and Ethernet hardware (NICs, switches, optics, cables), congestion management
techniques, and topology templates.

●​ Extract/Map:Identify and normalize key fields: link speed (Gb/s), port count, ASIC
generation, latency, buffer depth, PFC/ECN support, RDMA/RoCE capabilities,
routing type, topology constraints, and oversubscription ratios.

●​ Explain:Generate concise explanations for networking concepts such as “lossless
Ethernet,” “non-blocking fat-tree,” “PFC vs ECN,” “RDMA over Converged Ethernet,”
or “SHARP in-network reduction.”

●​ Estimate: Perform topology-aware calculations (node scalability, bisection
bandwidth, port utilization, oversubscription analysis) and flag likely configuration
issues (e.g., asymmetric leaf/spine counts or mixed link speeds).

●​ Track Change: Detect new hardware generations or unfamiliar field names and flag
them for human inspection instead of silent failures—ensuring long-term
maintainability as technologies evolve.

The student may implement only a subset of these features deeply, provided the
methodology and evaluation remain rigorous.

6. Required Skills

The intern is expected to have high level understanding of these concepts and capable to
learn a variety of required skills for the project including but not limited to:

●​ Python programming: HTTP requests, HTML parsing, data processing.
●​ Networking fundamentals: InfiniBand, Ethernet, RDMA/RoCE, PFC/ECN, topology

design (fat-tree, Dragonfly, leaf-spine).
●​ Data normalization: units, naming standards, schema definition (speed, radix,

latency, congestion control).
●​ Database management: DuckDB / PostgreSQL for structured data storage and

retrieval.
●​ Documentation skills: clear technical writing and result presentation.
●​ Intro AI/LLM skills (preferred): prompting models to interpret technical text, map

unstructured fields into schemas, and produce factual summaries of HPC network
concepts.

7. Duration and Other Details

●​ Recommended Period: 6 months
●​ Compensation: Monthly stipend with potential end-of-internship performance bonus

and potential paper publication co-authorship

Project 6: Dynamic RAG Dataset for
Multi-Cloud HPC

Description

This internship focuses on teaching our model to think like a cloud architect for HPC. Today,
our LLM understands HPC code, but it can’t yet turn that code into a concrete hosting plan
on AWS, GCP, or Azure—let alone a mixed, multi-cloud setup. The aim is to collect full,
functional architecture examples (single-cloud and heterogeneous multi-cloud), capture all
the moving parts (compute families, storage tiers, networks, schedulers, quotas/limits,
regions) and their costs, and shape them into a clean, provider-agnostic schema. Alongside
that dataset, we want to build a weekly auto-refreshed knowledge base that keeps SKUs,
prices, and capabilities up to date so the model’s answers are grounded in facts, not
guesses.

Finally, there will be a fine-tuning stage of the LLM on that curated dataset so it can read an
HPC repo profile, weigh trade-offs, recommend an end-to-end cloud architecture,
and—when helpful—emit a diagram that makes the design easy to understand.

Current status:
The current status of the existing LLM is fine-tuned on HPC code repositories (it understands
code), but it does not know clouds and cannot map HPC → cloud architecture yet.
The intern will work in close collaboration and mentorship with a PhD candidate pursuing
world class publishable research within an industrial and practical environment.

PFE project Goals:

1.​ Collect & Curate Deployable Architectures
○​ Build a dataset of single-cloud and multi-cloud (heterogeneous) examples

across AWS, GCP, Azure; fill the common schema, add short rationales and
cost snapshots, and (optionally) a small diagram per example.

2.​ Provider Component Catalogs
○​ For each provider, collect all relevant components (compute, storage,

network, scheduler) with the necessary specs, limits, regional availability, and
pricing.

3.​ Hint Parsing & Mapping to Cloud
○​ Parse the user hint (desired hardware/architecture/budget), validate it against

the given codebase, and map requirements to best-fit cloud components per
layer (compute, storage, network, HPC cluster choice) and rank providers for
each part.

4.​ End-to-End Architecture Synthesis (with RAG)

○​ Have the LLM assemble a complete hosting architecture for the event,

grounded by RAG (retrieved provider facts), producing a clear, structured plan
(and optional diagram).

5.​ Auto-Refresh Mechanism for RAG
○​ Implement a scheduled refresh (e.g., weekly) to update SKUs, prices, limits,

and docs across providers, keeping recommendations current and factual.
6.​ Evaluation & Demonstration

○​ Evaluate on unseen repos for fit-to-needs, clarity, and cost awareness; deliver
a live demo where the LLM outputs an accurate, end-to-end, cloud-agnostic
(or multi-cloud) architecture for a given HPC codebase.

Required skills:

●​ ML/NLP basics: dataset design, prompt/response schemas, instruction fine-tuning.
●​ Cloud literacy: familiarity with AWS/GCP/Azure building blocks (instances/VMs,

storage, regions, pricing).
●​ Data tooling: Python, JSON, simple ETL/versioning; basic vector search/RAG.
●​ Good practices: clear documentation, neat labeling, reproducibility with Git.
●​ HPC basics: Awareness of GPU/CPU differences, schedulers (K8s/Slurm/Batch),

and why networking/storage matter for parallel jobs.
●​ Software practices: Git, code reviews, clear documentation, and an eye for user

experience and safety (validations, guardrails).

Deliverables:

●​ Cleaned, preprocessed, well-presented dataset of HPC cloud architectures
(both single-provider and heterogeneous multi-cloud), in our common schema,
with short rationales and cost snapshots; (optional) diagram per example.​
Auto-refreshed RAG dataset (tunable periodicity) covering at least 3 providers with
components, SKUs, limits, regional availability, and prices, plus a simple retrieval
API.​
Fine-tuned LLM layers on your architecture dataset (config + checkpoints or LoRA
adapters).

●​ Final capability demo: the LLM accurately recommends an end-to-end cloud
hosting architecture for a given HPC codebase—detailed, cost-aware, fact-grounded,
and (when useful) accompanied by a diagram.

●​ Technical report: schema, curation process, RAG refresh, fine-tuning setup, and
evaluation results.

Duration and other details:
●​ Recommended period: 6 months.
●​ Compensation: Monthly stipend with potential end-of-internship performance bonus

and potential paper publication co-authorship

Project 7: Infrastructure as a Code
Normalizer & Execution Orchestrator
Keywords: Multi-Cloud HPC with Monitoring, FinOps, Security & Cross-Cloud
Comms

Description

Build a cloud-agnostic execution layer that takes an ArchitectureGraph (emitted by your
LLM/planner or hand-crafted for tests) and materializes it into deployable, validated HPC
environments on one cloud or across multiple clouds at once. It generates portable
Terraform from the graph, then uses Jenkins pipelines and Ansible to configure cluster
software, drivers, storage mounts , and network. It ships with strong monitoring (metrics,
logs, traces) and a FinOps layer (cost simulation, tagging, budgets/alerts, spot/preemptible
strategies, egress checks).

Current status:
The system can spin up a single Kubernetes-based HPC cluster on AWS using Terraform,
but only when given a narrow, pre-defined set of inputs. It does not yet support Google
Cloud or Azure, cannot mix components across providers (e.g., compute on AWS with
storage on GCP), and lacks flexibility in job schedulers (mostly K8s, no Slurm/AWS Batch
paths). Post-provision setup (drivers, MPI/NCCL, storage mounts) is limited, and there’s only
basic visibility into performance and cost—no unified monitoring dashboards, alerts, or
budget controls.
The intern will work in close collaboration and mentorship with a PhD candidate pursuing
world class publishable research within an industrial and practical environment.

PFE project Goals:

1) Interface & Contract Layer (what we accept as input)

●​ Define a simple, cloud-agnostic architecture description (the “plan” the LLM or a user
provides).

●​ Capture a few essentials only: workload type (e.g., MPI, GPU training), constraints
(region, budget), and preferred services (if any).

●​ Provide clear validation and human-readable errors when a plan is incomplete or
infeasible.

2) Provisioning & IaC Layer (how we create resources)

●​ Translate the plan into a portable Terraform that can target AWS, GCP, and Azure.
●​ Support single-cloud and mixed deployments (e.g., compute on one provider,

storage on another).
●​ Keep a small, curated library of reusable modules (compute, storage, networking)

that share consistent inputs/outputs.

3) Configuration & Orchestration Layer (how we make it HPC-ready)

●​ After provision, automatically configure drivers, libraries, and the chosen scheduler
(Slurm, Batch, or K8s).

●​ Standardize mounts for shared storage and object stores; verify access and
throughput.

●​ Provide simple smoke tests (e.g., HPL/HPCG/mini-apps) to confirm the cluster is
healthy.

4) Security & Isolation Layer (how we protect teams and data)

●​ Strong tenant isolation per competitor/team:
○​ Separate accounts/projects/subscriptions or hard namespaces with strict

RBAC & network policies.
○​ Per-team KMS keys and per-team buckets/filestores; default private

subnets and least-privilege IAM.
●​ Secrets & identity: OIDC-based workload identity; Secrets Manager / Key Vault /

Secret Manager for all credentials.
●​ Audit & compliance: centralized audit logs, access trails, immutable logs for dispute

resolution.

5) Inter-Provider Communication Layer (secure cross-cloud links)

●​ Secure data paths between providers:
○​ Encrypted site-to-site VPN / Interconnect options when needed; otherwise

signed, time-limited object access.
○​ TLS-only endpoints, presigned URLs, short-lived tokens; explicit egress

counters and warnings.
●​ Clear patterns for compute on Cloud A, storage on Cloud B with policy gates

(latency/egress thresholds).

6) Observability Layer (monitoring)

●​ Ship with standard dashboards for compute, GPU, storage, and job health.
●​ Enable alerts on common issues (e.g., node down, GPU throttling, disk saturation).
●​ Centralize logs and basic traces so failures are easier to explain and fix.

7) FinOps & Governance Layer (how we control spend and risk)

Before deploy: cost estimation for each plan/variant; compare options when relevant.

During competition:

●​ Auto-suspend/teardown idle workspaces (per-team policies): detect idle signals

(no queued/running jobs, low GPU/CPU utilization, inactive storage IOPS) → scale
to zero nodes, snapshot volumes, optionally archive to cold storage; auto-resume
on new job.

●​ Schedules for nightly scale-down; TTL for ephemeral assets.

Policy controls: mandatory cost tags, per-team budgets/alerts, safe default to
spot/preemptible with fallback.

Guardrails: block or require explicit approval for high-egress routes, out-of-policy
regions, or over-budget plans.

Required skills:

●​ Cloud platforms (at least two): Practical experience with AWS, GCP, or Azure
(VPC/VNet basics, instances/VMs, storage options, IAM).

●​ Infrastructure as Code & DevOps: Comfortable with Terraform (modules and
variables), plus a CI tool (Jenkins or similar) and a config tool (Ansible or similar).

●​ HPC basics: Awareness of GPU/CPU differences, schedulers (K8s/Slurm/Batch),
and why networking/storage matter for parallel jobs.

●​ Observability & Cost awareness: Familiar with metrics/logging dashboards and
cloud cost concepts (on-demand vs spot/preemptible, egress).

●​ Software practices: Git, code reviews, clear documentation, and an eye for user
experience and safety (validations, guardrails).

Deliverables:

●​ A technical report detailing system design, implementation, and evaluation.
●​ Architecture Intake & Validation Interface: A functional interface that receives the

LLM’s recommended architecture report, validates it, and translates it into a clear
schema the IaC normalizer understands—plus generates a cost-estimation summary.

●​ IaC Normalizer & Execution: A working normalizer that takes the schema and
automatically deploys/hosts the HPC competition according to the given single- or
multi-cloud architecture.

●​ Event Dashboard & Notifications: A well-defined dashboard showing what’s
happening during the event (health, usage, progress, costs) with real-time
alert/notification capabilities.

Duration and other details:
●​ Recommended period: 6 months.
●​ Compensation: Monthly stipend with potential end-of-internship performance bonus

and potential paper publication co-authorship

	
	
	PFE Projects Book
	
	
	Project 1: HPC Software Stack Build Automation
	Brief description:
	Current status:
	PFE project Goals:
	Software Stack Inventory and Filtering

	Required skills:
	Planned training:
	Duration and other details:
	
	Project 2: LLM-driven Text Classification and Content Analysis
	Brief Description:
	Current Status:
	Project Goals:
	1. Design an LLM-Based Text Understanding Module
	2. Develop a Category Identification and Clustering Framework
	3. Integration and Validation

	Required Skills:
	Deliverables:

	Duration and other details:
	Project 3: Next-Gen Mobile Experience
	Brief Description:
	Current Status:
	Project Goals:
	1. Finish and ship the iOS app

	Required Skills:
	Deliverables:
	Duration and Other Details:

	Project 4: Conversational & Argumentative Chatbot for HPC Cluster Storage (PFS-GPT)
	1. Context and Motivation
	2. Problem Statement
	Create a multi user, citation‑first HPC storage assistant able to:
	4.Learning Objectives
	7. Duration and Other Details

	Project 5: Open-Source HPC Networking Chatbot (FabricsGPT)
	1. Context and Motivation
	2. Problem Statement
	4.Learning Objectives
	7. Duration and Other Details

	
	
	
	
	Project 6: Dynamic RAG Dataset for Multi-Cloud HPC
	Description
	Current status:
	PFE project Goals:
	Required skills:
	Deliverables:

	Duration and other details:
	Project 7: Infrastructure as a Code Normalizer & Execution Orchestrator
	Keywords: Multi-Cloud HPC with Monitoring, FinOps, Security & Cross-Cloud Comms
	Description
	Current status:
	PFE project Goals:
	1) Interface & Contract Layer (what we accept as input)
	2) Provisioning & IaC Layer (how we create resources)
	3) Configuration & Orchestration Layer (how we make it HPC-ready)
	4) Security & Isolation Layer (how we protect teams and data)
	5) Inter-Provider Communication Layer (secure cross-cloud links)
	6) Observability Layer (monitoring)
	7) FinOps & Governance Layer (how we control spend and risk)

	Required skills:
	Deliverables:

	Duration and other details:

